Conjugate Directions for Stochastic Gradient Descent

  • Authors:
  • Nicol N. Schraudolph;Thore Graepel

  • Affiliations:
  • -;-

  • Venue:
  • ICANN '02 Proceedings of the International Conference on Artificial Neural Networks
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

The method of conjugate gradients provides a very effective way to optimize large, deterministic systems by gradient descent. In its standard form, however, it is not amenable to stochastic approximation of the gradient. Here we explore ideas from conjugate gradient in the stochastic (online) setting, using fast Hessian-gradient products to set up low-dimensional Krylov subspaces within individual mini-batches. In our benchmark experiments the resultingonline learningalg orithms converge orders of magnitude faster than ordinary stochastic gradient descent.