Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning (Distinguished Paper)

  • Authors:
  • Kirk Schloegel;George Karypis;Vipin Kumar

  • Affiliations:
  • -;-;-

  • Venue:
  • Euro-Par '00 Proceedings from the 6th International Euro-Par Conference on Parallel Processing
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

Sequential multi-constraint graph partitioners have been developed to address the load balancing requirements of multi-phase simulations. The efficient execution of large multi-phase simulations on high performance parallel computers requires that the multi-constraint partitionings are computed in parallel. This paper presents a parallel formulation of a recently developed multi-constraint graph partitioning algorithm. We describe this algorithm and give experimental results conducted on a 128-processor Cray T3E. We show that our parallel algorithm is able to efficiently compute partitionings of similar edge-cuts as serial multi-constraint algorithms, and can scale to very large graphs. Our parallel multi-constraint graph partitioner is able to compute a three-constraint 128-way partitioning of a 7.5 million node graph in about 7 seconds on 128 processors of a Cray T3E.