Applying Machine Learning for Ensemble Branch Predictors

  • Authors:
  • Gabriel H. Loh;Dana S. Henry

  • Affiliations:
  • -;-

  • Venue:
  • IEA/AIE '02 Proceedings of the 15th international conference on Industrial and engineering applications of artificial intelligence and expert systems: developments in applied artificial intelligence
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

The problem of predicting the outcome of a conditional branch instruction is a prerequisite for high performance in modern processors. It has been shown that combining different branch predictors can yield more accurate prediction schemes, but the existing research only examines selection-based approaches where one predictor is chosen without considering the actual predictions of the available predictors. The machine learning literature contains many papers addressing the problem of predicting a binary sequence in the presence of an ensemble of predictors or experts. We show that the Weighted Majority algorithm applied to an ensemble of branch predictors yields a prediction scheme that results in a 5-11% reduction in mispredictions. We also demonstrate that a variant of the Weighted Majority algorithm that is simplified for efficient hardware implementation still achieves misprediction rates that are within 1.2% of the ideal case.