Degree of Composition of Highly Nonlinear Functions and Applications to Higher Order Differential Cryptanalysis

  • Authors:
  • Anne Canteaut;Marion Videau

  • Affiliations:
  • -;-

  • Venue:
  • EUROCRYPT '02 Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques: Advances in Cryptology
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

To improve the security of iterated block ciphers, the resistance against linear cryptanalysis has been formulated in terms of provable security which suggests the use of highly nonlinear functions as round functions. Here, we show that some properties of such functions enable to find a new upper bound for the degree of the product of its Boolean components. Such an improvement holds when all values occurring in the Walsh spectrum of the round function are divisible bya high power of 2. This result leads to a higher order differential attack on any 5-round Feistel ciphers using an almost bent substitution function. We also show that the use of such a function is precisely the origin of the weakness of a reduced version of MISTY1 reported in [23, 1].