A Reconfigurable Embedded Input Device for Kinetically Challenged Persons

  • Authors:
  • Apostolos Dollas;Kyprianos Papademetriou;Nikolaos Aslanides;Tom Kean

  • Affiliations:
  • -;-;-;-

  • Venue:
  • FPL '01 Proceedings of the 11th International Conference on Field-Programmable Logic and Applications
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

A new input device for kinetically challenged persons has been developed. This device is based on solid-state accelerometers to sense motion in space, a microcontroller to sample the data in real time, and an embedded FPGA to distinguish types of motion from programmable lists of motions. The FPGA computational model for the first version, presented in this paper, is an implementation of finite state machines (FSM) running in parallel, one for each type of motion which is detected by the system. The design is modular, allowing for different lists of motions and/or thresholds on input data to be incorporated with reconfiguration of the FPGA. A personal computer is used to determine the appropriate settings for each motion, which are then converted to FSM. The architecture of the system, types of motions it detects, and its performance characteristics are presented in this work.