A Geometric Approach to Lightfield Calibration

  • Authors:
  • Reinhard Koch;Benno Heigl;Marc Pollefeys;Luc J. Van Gool;Heinrich Niemann

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • CAIP '99 Proceedings of the 8th International Conference on Computer Analysis of Images and Patterns
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

Lightfield rendering allows fast visualization of complex scenes by view interpolation from images of densely spaced camera viewpoints. The lightfield data structure requires calibrated viewpoints, and rendering quality can be improved substantially when local scene depth is known for each viewpoint. In this contribution we propose to combine lightfield rendering with a geometry-based structure-from-motion approach that computes camera calibration and local depth estimates. The advantage of the combined approach w.r.t. a pure geometric structure recovery is that the estimated geometry need not be globally consistent but is updated locally depending on the rendering viewpoint. We concentrate on the viewpoint calibration that is computed directly from the image data by tracking image feature points. Ground-truth experiments on real lightfield sequences confirm the quality of calibration.