The effects of systemic packet loss on aggregate TCP flows

  • Authors:
  • Thomas J. Hacker;Brian D. Noble;Brian D. Athey

  • Affiliations:
  • University of Michigan;University of Michigan;University of Michigan

  • Venue:
  • Proceedings of the 2002 ACM/IEEE conference on Supercomputing
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

The use of parallel TCP connections to increase throughput for bulk transfers is common practice within the high performance computing community. However, the effectiveness, fairness, and efficiency of data transfers across parallel connections is unclear. This paper considers the impact of systemic non-congestion related packet loss on the effectiveness, fairness, and efficiency of parallel TCP transmissions. The results indicate that parallel connections are effective at increasing aggregate throughput, and increase the overall efficiency of the network bottleneck. In the presence of congestion related losses, parallel flows steal bandwidth from other single stream flows. A simple modification is presented that reduces the fairness problems when congestion is present, but retains effectiveness and efficiency.