Stochastic Network Interdiction

  • Authors:
  • Kelly J. Cormican;David P. Morton;R. Kevin Wood

  • Affiliations:
  • -;-;-

  • Venue:
  • Operations Research
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

Using limited assets, an interdictor attempts to destroy parts of a capacitated network through which an adversary will subsequently maximize flow. We formulate and solve a stochastic version of the interdictor's problem: Minimize the expected maximum flow through the network when interdiction successes are binary random variables. Extensions are made to handle uncertain arc capacities and other realistic variations. These two-stage stochastic integer programs have applications to interdicting illegal drugs and to reducing the effectiveness of a military force moving materiel, troops, information, etc., through a network in wartime. Two equivalent model formulations allow Jensen's inequality to be used to compute both lower and upper bounds on the objective, and these bounds are improved within a sequential approximation algorithm. Successful computational results are reported on networks with over 100 nodes, 80 interdictable arcs, and 180 total arcs.