A graph-theoretic approach to protect static and moving targets from adversaries

  • Authors:
  • J. P. Dickerson;G. I. Simari;V. S. Subrahmanian;Sarit Kraus

  • Affiliations:
  • University of Maryland, College Park, Maryland;University of Maryland, College Park, Maryland;University of Maryland, College Park, Maryland;Bar-Ilan University, Ramat Gan, Israel

  • Venue:
  • Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1 - Volume 1
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The static asset protection problem (SAP) in a road network is that of allocating resources to protect vertices, given any possible behavior by an adversary determined to attack those assets. The dynamic asset protection (DAP) problem is a version of SAP where the asset is following a fixed and widely known route (e.g., a parade route) and needs to be protected. We formalize what it means for a given allocation of resources to be "optimal" for protecting a desired set of assets, and show that randomly allocating resources to a single edge cut in the road network solves this problem. Unlike SAP, we show that DAP is not only an NP-complete problem, but that approximating DAP is also NP-hard. We provide the GreedyDAP heuristic algorithm to solve DAP and show experimentally that it works well in practice, using road network data for real cities.