Improving the Accuracy vs. Speed Tradeoff for Simulating Shared-Memory Multiprocessors with ILP Processors

  • Authors:
  • Murthy Durbhakula;Vijay S. Pai;Sarita Adve

  • Affiliations:
  • -;-;-

  • Venue:
  • HPCA '99 Proceedings of the 5th International Symposium on High Performance Computer Architecture
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

Previous simulators for shared-memory architectures have imposed a large tradeoff between simulation accuracy and speed. Most such simulators model simple processors that do not exploit common instruction-level parallelism (ILP) features, consequently exhibiting large errors when used to model current systems. A few newer simulators model current ILP processors in detail, but we find them to be about ten times slower. We propose a new simulation technique, based on a novel adaptation of direct execution, that alleviates this accuracy vs. speed tradeoff.We compare the speed and accuracy of our new simulator, DirectRSIM, with three other simulators -- RSIM (a detailed simulator for multiprocessors with ILP processors) and two representative simple-processor based simulators. Compared to RSIM, on average, DirectRSIM is 3.6 times faster and exhibits a relative error of only 1.3% in total execution time. Compared to the simple-processor based simulators, DirectRSIM is far superior in accuracy, and yet is only 2.7 times slower.