Dynamic routing of restorable bandwidth-guaranteed tunnels using aggregated network resource usage information

  • Authors:
  • Murali Kodialam;T. V. Lakshman

  • Affiliations:
  • Bell Laboratories, Lucent Technologies, Holmdel, NJ;Bell Laboratories, Lucent Technologies, Holmdel, NJ

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents new algorithms for dynamic routing of restorable bandwidth-guaranteed paths. We assume that connection requests one-by-one and have to be routed with no a priori knowledge of future arrivals. In order to guarantee restorability, in addition to determining an active path to route each request, an alternate link (node) disjoint backup (restoration) path has to be determined for the request at the time of connection initiation. This joint on-line routing problem is becoming particularly important in optical networks and in multiprotocol label switching (MPLS)-based networks due to the trend in backbone networks toward dynamic provisioning of bandwidth-guaranteed or wavelength paths. A straightforward solution for the restoration problem is to find two disjoint paths. However, this results in excessive resource usage. Given a restoration objective, such as protection against single-link failures, backup path bandwidth usage can be reduced by judicious sharing of backup paths amongst certain active paths while still maintaining restorability. The best sharing performance is achieved if the routing of every path in progress in the network is known to the routing algorithm at the time of a new path setup. We give an integer programming formulation for this problem which is new. Complete path routing knowledge is a reasonable assumption for a centralized routing algorithm. However, it is not often desirable, particularly when distributed routing is preferred. We show that an aggregate information scenario which uses only aggregated and not per-path information provides sufficient information for a suitably developed algorithm to be able to perform almost as well as the complete information scenario. Disseminating this aggregate information is feasible using proposed traffic engineering extensions to routing protocols. We formulate the dynamic restorable bandwidth routing problem in this aggregate information scenario and develop efficient routing algorithms. We show that the performance of our aggregate information-based algorithm is close to the complete information bound.