Tradeoffs in the Design of Efficient Algorithm-Based Error Detection Schemes for Hypercube Multiprocessors

  • Authors:
  • Vijay Balasubramanian;Prithviraj Banerjee

  • Affiliations:
  • Univ. of Illinois at Urbana-Champaign, Urbana;Univ. of Illinois at Urbana-Champaign, Urbana

  • Venue:
  • IEEE Transactions on Software Engineering
  • Year:
  • 1990

Quantified Score

Hi-index 0.02

Visualization

Abstract

The authors provide an in-depth study of the various issues and tradeoffs available in algorithm-based error detection, as well as a general methodology for evaluating the schemes. They illustrate the approach on an extremely useful computation in the field of numerical linear algebra: QR factorization. They have implemented and investigated numerous ways of applying algorithm-based error detection using different system-level encoding strategies for QR factorization. Specifically, schemes based on the checksum and sum-of-squares (SOS) encoding techniques have been developed. The results of studies performed on a 16-processor Intel iPSC-2/D4/MX hypercube multiprocessor are reported. It is shown that, in general, the SOS approach gives much better coverage (85-100%) for QR factorization while maintaining low overheads (below 10%).