Rendering and managing spherical data with sphere quadtrees

  • Authors:
  • György Fekete

  • Affiliations:
  • NASA/Goddard Space Flight Center, Greenbelt, MD

  • Venue:
  • VIS '90 Proceedings of the 1st conference on Visualization '90
  • Year:
  • 1990

Quantified Score

Hi-index 0.00

Visualization

Abstract

Most databases for spherically distributed data are not structured in a manner consistent with their geometry. As a result, such databases possess undesirable artifacts, including the introduction of "tears" in the data when they are mapped onto a flat file system. Furthermore, it is difficult to make queries about the topological relationship among the data components without performing real arithmetic. The sphere quadtree (SQT), which is based on the recursive subdivision of spherical triangles obtained by projecting the faces of an icosahedron onto a sphere, eliminates some of these problems. The SQT allows the representation of data at multiple levels and arbitrary resolution. Efficient search strategies can be implemented for the selection of data to be rendered or analyzed by a specific technique. Furthermore, sphere quadtrees offer significant potential for improving the accuracy and efficiency of spherical surface rendering algorithms as well as for spatial data management and geographic information systems. Most importantly, geometric and topological consistency with the data is maintained.