DFuse: a framework for distributed data fusion

  • Authors:
  • Rajnish Kumar;Matthew Wolenetz;Bikash Agarwalla;JunSuk Shin;Phillip Hutto;Arnab Paul;Umakishore Ramachandran

  • Affiliations:
  • Georgia Institute of Technology;Georgia Institute of Technology;Georgia Institute of Technology;Georgia Institute of Technology;Georgia Institute of Technology;Georgia Institute of Technology;Georgia Institute of Technology

  • Venue:
  • Proceedings of the 1st international conference on Embedded networked sensor systems
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Simple in-network data aggregation (or fusion) techniques for sensor networks have been the focus of several recent research efforts, but they are insufficient to support advanced fusion applications. We extend these techniques to future sensor networks and ask two related questions: (a) what is the appropriate set of data fusion techniques, and (b) how do we dynamically assign aggregation roles to the nodes of a sensor network. We have developed an architectural framework, DFuse, for answering these two questions. It consists of a data fusion API and a distributed algorithm for energy-aware role assignment. The fusion API enables an application to be specified as a coarse-grained dataflow graph, and eases application development and deployment. The role assignment algorithm maps the graph onto the network, and optimally adapts the mapping at run-time using role migration. Experiments on an iPAQ farm show that, the fusion API has low-overhead, and the role assignment algorithm with role migration significantly increases the network lifetime compared to any static assignment.