Minimizing the stabbing number of matchings, trees, and triangulations

  • Authors:
  • Sándor P. Fekete;Marco E. Lübbecke;Henk Meijer

  • Affiliations:
  • Braunschweig University of Technology, Braunschweig, Germany;Technische Universität Berlin, Berlin, Germany;Queen's University, Kingston, Ontario, Canada

  • Venue:
  • SODA '04 Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. We investigate problems of finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of points. The complexity of these problems has been a long-standing open problem; in fact, it is one of the original 30 outstanding open problems in computational geometry on the list by Demaine, Mitchell, and O'Rourke.We show that minimum stabbing problems are NP-complete. We also show that an iterated rounding technique is applicable for matchings and spanning trees of minimum stabbing number by showing that there is a polynomially solvable LP-relaxation that has fractional solutions with at least one heavy edge. This suggests constant-factor approximations. Our approach uses polyhedral methods that are related to another open problem (from a combinatorial optimization list), in combination with geometric properties. We also demonstrate that the resulting techniques are practical for actually solving problems with up to several hundred points optimally or near-optimally.