End-to-end packet-scheduling in wireless ad-hoc networks

  • Authors:
  • V. S. Anil Kumar;Madhav V. Marathe;Srinivasan Parthasarathy;Aravind Srinivasan

  • Affiliations:
  • Los Alamos National Labo ratory, Los Alamos, NM;Los Alamos National Labo ratory, Los Alamos, NM;University of Maryland, College Park, MD;University of Maryland, College Park, MD

  • Venue:
  • SODA '04 Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Packet-scheduling is a particular challenge in wireless networks due to interference from nearby transmissions. A distance-2 interference model serves as a useful abstraction here, and we study packet routing and scheduling under this model. The main focus of our work is the development of fully-distributed (decentralized) protocols. We present polylogarithmic/constant factor approximation algorithms for various families of disk graphs (which capture the geometric nature of wireless-signal propagation), as well as near-optimal approximation algorithms for general graphs. The packet-scheduling work by L eighton, Maggs and Rao (Combinatorica, 1994) and a basic distributed coloring procedure, originally due to Luby (J. Computer and System Sciences, 1993), underlie many of our algorithms. Experimental work of Finocchi, Panconesi, and Silvestri (SODA 2002) showed that a natural modification of Luby's algorithm leads to improved performance, and a rigorous explanation of this was left as an open question; we prove that the modified algorithm is provably better in the worst-case. Finally, using simulations, we study the impact of the routing strategy and the choice of parameters on the performance of our distributed algorithm for unit disk graphs.