Interprocessor Communication with Limited Memory

  • Authors:
  • A. Pinar;B. Hendrickson

  • Affiliations:
  • Comput. Res. Div., Lawrence Berkeley Nat. Lab., CA, USA;-

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many parallel applications require periodic redistribution of workloads and associated data. In a distributed memory computer, this redistribution can be difficult if limited memory is available for receiving messages. We propose a model for optimizing the exchange of messages under such circumstances which we call the minimum phase remapping problem. We first show that the problem is NP-Complete, and then analyze several methodologies for addressing it. First, we show how the problem can be phrased as an instance of multicommodity flow. Next, we study a continuous approximation to the problem. We show that this continuous approximation has a solution which requires at most two more phases than the optimal discrete solution, but the question of how to consistently obtain a good discrete solution from the continuous problem remains open. We also devise a simple and practical approximation algorithm for the problem with a bound of 1.5 times the optimal number of phases. We also present an empirical study of variations of our algorithms which indicate that our approaches are quite practical.