Autonomic personal computing

  • Authors:
  • D. F. Bantz;C. Bisdikian;D. Challener;J. P. Karidis;S. Mastrianni;A. Mohindra;D. G. Shea;M. Vanover

  • Affiliations:
  • IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598;IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598;IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598;IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598;IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598;IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598;IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598;IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598

  • Venue:
  • IBM Systems Journal
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Autonomic personal computing is personal computing on autonomic computing platforms. Its goals combine those of personal computing with those of autonomic computing. The challenge of personal autonomic computing is to simplify and enhance the end-user experience, delighting the user by anticipating his or her needs in the face of a complex, dynamic, and uncertain environment. In this paper we identify the key technologies that enable autonomic behavior as distinguished from fault-tolerant behavior. We give some examples of current autonomic behavior and some general considerations for an architecture that supports autonomic personal computing. We identify its challenges to standards and technology developers and conclude with some guidance for future work.