The Bayesian backfitting relevance vector machine

  • Authors:
  • Aaron D'Souza;Sethu Vijayakumar;Stefan Schaal

  • Affiliations:
  • University of Southern California, Los Angeles, CA;University of Edinburgh, Edinburgh, UK;University of Southern California, Los Angeles, CA

  • Venue:
  • ICML '04 Proceedings of the twenty-first international conference on Machine learning
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Traditional non-parametric statistical learning techniques are often computationally attractive, but lack the same generalization and model selection abilities as state-of-the-art Bayesian algorithms which, however, are usually computationally prohibitive. This paper makes several important contributions that allow Bayesian learning to scale to more complex, real-world learning scenarios. Firstly, we show that backfitting --- a traditional non-parametric, yet highly efficient regression tool --- can be derived in a novel formulation within an expectation maximization (EM) framework and thus can finally be given a probabilistic interpretation. Secondly, we show that the general framework of sparse Bayesian learning and in particular the relevance vector machine (RVM), can be derived as a highly efficient algorithm using a Bayesian version of backfitting at its core. As we demonstrate on several regression and classification benchmarks, Bayesian backfitting offers a compelling alternative to current regression methods, especially when the size and dimensionality of the data challenge computational resources.