A metrics system for quantifying operational coupling in embedded computer control systems

  • Authors:
  • DeJiu Chen;Martin Törngren

  • Affiliations:
  • Royal Institute of Technology, Stockholm, Sweden;Royal Institute of Technology, Stockholm, Sweden

  • Venue:
  • Proceedings of the 4th ACM international conference on Embedded software
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

One central issue in system structuring and quality prediction is the interdependencies of system modules. This paper proposes a novel technique for determining the operational coupling in embedded computer control systems. It allows us to quantify dependencies between modules, formed by different kinds of relationships in a solution, and therefore promotes a more systematic approach to the reasoning about modularity. Compared to other existing coupling metrics, which are often implementation-technology specific such as confining to the inheritance and method invocation relationships in OO software, this metrics system considers both communication and synchronization and can be applied throughout system design. The metrics system has two parts. The first part supports a measurement of coupling by considering individual relationship types separately. The quantification is performed by considering the topology of connections, as well as the multiplicity, replication, frequency, and accuracy of component properties that appear in a relationship. The second part provides a methodology for combining coupling by individual relationship types into an overall coupling, where domain specific heuristics and technology constraints are used to determine the weighting.