ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption

  • Authors:
  • Danfeng Yao;Nelly Fazio;Yevgeniy Dodis;Anna Lysyanskaya

  • Affiliations:
  • Brown University, Providence, RI;New York University, New York, NY;New York University, New York, NY;Brown University, Providence, RI

  • Venue:
  • Proceedings of the 11th ACM conference on Computer and communications security
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

A forward-secure encryption scheme protects secret keys from exposure by evolving the keys with time. Forward security has several unique requirements in hierarchical identity-based encryption (HIBE) scheme: (1) users join dynamically; (2) encryption is joining-time-oblivious; (3) users evolve secret keys autonomously. We present a scalable forward-secure HIBE (fs-HIBE) scheme satisfying the above properties. We also show how our fs-HIBE scheme can be used to construct a forward-secure public-key broadcast encryption scheme, which protects the secrecy of prior transmissions in the broadcast encryption setting. We further generalize fs-HIBE into a collusion-resistant multiple hierarchical ID-based encryption scheme, which can be used for secure communications with entities having multiple roles in role-based access control. The security of our schemes is based on the bilinear Diffie-Hellman assumption in the random oracle model.