Discrete acceleration and personalised tiling as brain?body interface paradigms for neurorehabilitation

  • Authors:
  • Paul Gnanayutham;Chris Bloor;Gilbert Cockton

  • Affiliations:
  • University of Portsmouth, Portsmouth, United Kingdom;University of Sunderland, Sunderland, United Kingdom;University of Sunderland, Sunderland, United Kingdom

  • Venue:
  • Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

We present two studies that have advanced the design of brain-body interfaces for use in the rehabilitation of individuals with severe neurological impairment due to traumatic brain injury. We first developed and evaluated an adaptive cursor acceleration algorithm based on screen areas. This improved the initial design, but was too inflexible to let users make the most of their highly varied abilities. Only some individuals were well served by this adaptive interface. We therefore developed and evaluated an approach based on personalized tile layouts. The rationales for both designs are presented, along with details of their implementation. Evaluation studies for each are reported, which show that we have extended the user population who can use our interfaces relative to previous studies. We have also extended the usable functionality for some of our user group. We thus claim that personalized tiling with discrete acceleration has allowed us to extend the usable functionality of brain-body interfaces to a wider population with traumatic brain injury, thus creating new options for neurorehabiliation.