Dynamic coast control of train movement with genetic algorithm

  • Authors:
  • K. K. Wong;T. K. Ho

  • Affiliations:
  • Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong;Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong

  • Venue:
  • International Journal of Systems Science
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

The railway service is now the major transportation means in most of the countries around the world. With the increasing population and expanding commercial and industrial activities, a high quality of railway service is the most desirable. Train service usually varies with the population activities throughout a day and train coordination and service regulation are then expected to meet the daily passengers' demand. Dwell time control at stations and fixed coasting point in an inter-station run are the current practices to regulate train service in most metro railway systems. However, a flexible and efficient train control and operation is not always possible. To minimize energy consumption of train operation and make certain compromises on the train schedule, coast control is an economical approach to balance run-time and energy consumption in railway operation if time is not an important issue, particularly at off-peak hours. The capability to identify the starting point for coasting according to the current traffic conditions provides the necessary flexibility for train operation. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting point(s) and investigates the possible improvement on fitness of genes. Single and multiple coasting point control with simple GA are developed to attain the solutions and their corresponding train movement is examined. Further, a hierarchical genetic algorithm (HGA) is introduced here to identify the number of coasting points required according to the traffic conditions, and Minimum-Allele-Reserve-Keeper (MARK) is adopted as a genetic operator to achieve fitter solutions.