Evolutionary form-finding of tensegrity structures

  • Authors:
  • Chandana Paul;Hod Lipson;Francisco J. Valero Cuevas

  • Affiliations:
  • Cornell University, Ithaca, NY;Cornell University, Ithaca, NY;Cornell University, Ithaca, NY

  • Venue:
  • GECCO '05 Proceedings of the 7th annual conference on Genetic and evolutionary computation
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Tensegrity structures are stable 3-dimensional mechanical structures which maintain their form due to an intricate balance of forces between disjoint rigid elements and continuous tensile elements. Tensegrity structures can give rise to lightweight structures with high strength-to-weight ratios and their utility has been appreciated in architecture, engineering and recently robotics. However, the determination of connectivity patterns of the rigid and tensile elements which lead to stable tensegrity is challenging. Available methods are limited to the use of heuristic guidelines, hierarchical design based on known components, or mathematical methods which can explore only a subset of the space. This paper investigates the use of evolutionary algorithms in the form-finding of tensegrity structures. It is shown that an evolutionary algorithm can be used to explore the space of arbitrary tensegrity structures which are difficult to design using other methods, and determine new, non-regular forms. It suggests that evolutionary algorithms can be used as the basis for a general design methodology for tensegrity structures.