On levels in arrangements of surfaces in three dimensions

  • Authors:
  • Timothy M. Chan

  • Affiliations:
  • University of Waterloo, Waterloo, Ontario, Canada

  • Venue:
  • SODA '05 Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

A favorite open problem in combinatorial geometry is to determine the worst-case complexity of a level in an arrangement. Up to now, nontrivial upper bounds in three dimensions are known only for the linear cases of planes and triangles. We propose the first technique that can deal with more general surfaces in three dimensions. For example, in an arrangement of n "pseudo-planes" or "pseudo-spheres" (where each triple of surfaces has at most two common intersections), we prove that there are at most O(n2.9986) vertices of any given level.