Dynamic syslog mining for network failure monitoring

  • Authors:
  • Kenji Yamanishi;Yuko Maruyama

  • Affiliations:
  • NEC Corporation, Kawasaki, Kanagawa, Japan;NEC Corporation, Kawasaki, Kanagawa, Japan

  • Venue:
  • Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Syslog monitoring technologies have recently received vast attentions in the areas of network management and network monitoring. They are used to address a wide range of important issues including network failure symptom detection and event correlation discovery. Syslogs are intrinsically dynamic in the sense that they form a time series and that their behavior may change over time. This paper proposes a new methodology of dynamic syslog mining in order to detect failure symptoms with higher confidence and to discover sequential alarm patterns among computer devices. The key ideas of dynamic syslog mining are 1) to represent syslog behavior using a mixture of Hidden Markov Models, 2) to adaptively learn the model using an on-line discounting learning algorithm in combination with dynamic selection of the optimal number of mixture components, and 3) to give anomaly scores using universal test statistics with a dynamically optimized threshold. Using real syslog data we demonstrate the validity of our methodology in the scenarios of failure symptom detection, emerging pattern identification, and correlation discovery.