Convergence Analysis of a PageRank Updating Algorithm by Langville and Meyer

  • Authors:
  • Ilse C. F. Ipsen;Steve Kirkland

  • Affiliations:
  • -;-

  • Venue:
  • SIAM Journal on Matrix Analysis and Applications
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The PageRank updating algorithm proposed by Langville and Meyer is a special case of an iterative aggregation/disaggregation (SIAD) method for computing stationary distributions of very large Markov chains. It is designed, in particular, to speed up the determination of PageRank, which is used by the search engine Google in the ranking of web pages. In this paper the convergence, in exact arithmetic, of the SIAD method is analyzed. The SIAD method is expressed as the power method preconditioned by a partial LU factorization. This leads to a simple derivation of the asymptotic convergence rate of the SIAD method. It is known that the power method applied to the Google matrix always converges, and we show that the asymptotic convergence rate of the SIAD method is at least as good as that of the power method. Furthermore, by exploiting the hyperlink structure of the web it can be shown that the asymptotic convergence rate of the SIAD method applied to the Google matrix can be made strictly faster than that of the power method.