Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures

  • Authors:
  • Xiaoliang Wan;George Em Karniadakis

  • Affiliations:
  • -;-

  • Venue:
  • SIAM Journal on Scientific Computing
  • Year:
  • 2006

Quantified Score

Hi-index 0.09

Visualization

Abstract

We develop a multi-element generalized polynomial chaos (ME-gPC) method for arbitrary probability measures and apply it to solve ordinary and partial differential equations with stochastic inputs. Given a stochastic input with an arbitrary probability measure, its random space is decomposed into smaller elements. Subsequently, in each element a new random variable with respect to a conditional probability density function (PDF) is defined, and a set of orthogonal polynomials in terms of this random variable is constructed numerically. Then, the generalized polynomial chaos (gPC) method is implemented element-by-element. Numerical experiments show that the cost for the construction of orthogonal polynomials is negligible compared to the total time cost. Efficiency and convergence of ME-gPC are studied numerically by considering some commonly used random variables. ME-gPC provides an efficient and flexible approach to solving differential equations with random inputs, especially for problems related to long-term integration, large perturbation, and stochastic discontinuities.