Energy-efficient power and rate control with QoS constraints: a game-theoretic approach

  • Authors:
  • Farhad Meshkati;H. Vincent Poor;Stuart C. Schwartz;Radu V. Balan

  • Affiliations:
  • Princeton University, Princeton, NJ;Princeton University, Princeton, NJ;Princeton University, Princeton, NJ;Siemens Corporate Research, Princeton, NJ

  • Venue:
  • Proceedings of the 2006 international conference on Wireless communications and mobile computing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

A game-theoretic model is proposed to study the cross-layer problem of joint power and rate control with quality of service (QoS) constraints in multiple-access networks. In the proposed game, each user seeks to choose its transmit power and rate in a distributed manner in order to maximize its own utility and at the same time satisfy its QoS requirements. The user's QoS constraints are specified in terms of the average source rate and average delay. The utility function considered here measures energy efficiency and the delay includes both transmission and queueing delays. The Nash equilibrium solution for the proposed non-cooperative game is derived and a closed-form expression for the utility achieved at equilibrium is obtained. It is shown that the QoS requirements of a user translate into a "size" for the user which is an indication of the amount of network resources consumed by the user. Using this framework, the tradeoffs among throughput, delay, network capacity and energy efficiency are also studied.