Center-piece subgraphs: problem definition and fast solutions

  • Authors:
  • Hanghang Tong;Christos Faloutsos

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Given Q nodes in a social network (say, authorship network), how can we find the node/author that is the center-piece, and has direct or indirect connections to all, or most of them? For example, this node could be the common advisor, or someone who started the research area that the Q nodes belong to. Isomorphic scenarios appear in law enforcement (find the master-mind criminal, connected to all current suspects), gene regulatory networks (find the protein that participates in pathways with all or most of the given Q proteins), viral marketing and many more.Connection subgraphs is an important first step, handling the case of Q=2 query nodes. Then, the connection subgraph algorithm finds the b intermediate nodes, that provide a good connection between the two original query nodes.Here we generalize the challenge in multiple dimensions: First, we allow more than two query nodes. Second, we allow a whole family of queries, ranging from 'OR' to 'AND', with 'softAND' in-between. Finally, we design and compare a fast approximation, and study the quality/speed trade-off.We also present experiments on the DBLP dataset. The experiments confirm that our proposed method naturally deals with multi-source queries and that the resulting subgraphs agree with our intuition. Wall-clock timing results on the DBLP dataset show that our proposed approximation achieve good accuracy for about 6:1 speedup.