Pragmatic Genetic Programming strategy for the problem of vehicle detection in airborne reconnaissance

  • Authors:
  • Daniel Howard;Simon C. Roberts;Conor Ryan

  • Affiliations:
  • QinetiQ, Malvern Technology Centre, St. Andrews Road, Malvern, Worcestershire WR14 3PS, United Kingdom;QinetiQ, Malvern Technology Centre, St. Andrews Road, Malvern, Worcestershire WR14 3PS, United Kingdom;Computer Science and Information Systems Department, University of Limerick, Limerick, Ireland

  • Venue:
  • Pattern Recognition Letters - Special issue: Evolutionary computer vision and image understanding
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

A Genetic Programming (GP) method uses multiple runs, data decomposition stages, to evolve a hierarchical set of vehicle detectors for the automated inspection of infrared line scan imagery that has been obtained by a low flying aircraft. The performance on the scheme using two different sets of GP terminals (all are rotationally invariant statistics of pixel data) is compared on 10 images. The discrete Fourier transform set is found to be marginally superior to the simpler statistics set that includes an edge detector. An analysis of detector formulae provides insight on vehicle detection principles. In addition, a promising family of algorithms that take advantage of the GP method's ability to prescribe an advantageous solution architecture is developed as a post-processor. These algorithms selectively reduce false alarms by exploring context, and determine the amount of contextual information that is required for this task.