Profitable loop fusion and tiling using model-driven empirical search

  • Authors:
  • Apan Qasem;Ken Kennedy

  • Affiliations:
  • Rice University, Houston, TX;Rice University, Houston, TX

  • Venue:
  • Proceedings of the 20th annual international conference on Supercomputing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Loop fusion and tiling are both recognized as effective transformations for improving memory performance of scientific applications. However, because of their sensitivity to the underlying cache architecture and their interaction with each other it is difficult to determine a good heuristic for applying these transformations profitably across architectures. In this paper, we present a model-guided empirical tuning strategy for profitable application of loop fusion and tiling. Our strategy consists of a detailed cost model that characterizes the interaction between the two transformations at different levels of the memory hierarchy. The novelty of our approach is in exposing key architectural parameters within the model for automatic tuning through empirical search. Preliminary experiments with a set of applications on four different platforms show that our strategy achieves significant performance improvement over fully optimized code generated by state-of-the-art commercial compilers. The time spent in searching for the best parameters is considerably less than with other search strategies.