Discrete conformal mappings via circle patterns

  • Authors:
  • Liliya Kharevych;Boris Springborn;Peter Schröder

  • Affiliations:
  • Caltech;TU Berlin;Caltech

  • Venue:
  • SIGGRAPH '05 ACM SIGGRAPH 2005 Courses
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

We introduce a novel method for the construction of discrete conformal mappings from (regions of) embedded meshes to the plane. Our approach is based on circle patterns, i.e., arrangements of circles---one for each face---with prescribed intersection angles. Given these angles the circle radii follow as the unique minimizer of a convex energy. The method has two principal advantages over earlier approaches based on discrete harmonic mappings: (1) it supports very flexible boundary conditions ranging from natural boundaries to control of the boundary shape via prescribed curvatures; (2) the solution is based on a convex energy as a function of logarithmic radius variables with simple explicit expressions for gradients and Hessians, greatly facilitating robust and efficient numerical treatment. We demonstrate the versatility and performance of our algorithm with a variety of examples.