Optimal Global Conformal Surface Parameterization

  • Authors:
  • Miao Jin;Yalin Wang;Shing-Tung Yau;Xianfeng Gu

  • Affiliations:
  • State University of New York at Stony Brook;University of California at Los Angeles;Harvard University;State University of New York at Stony Brook

  • Venue:
  • VIS '04 Proceedings of the conference on Visualization '04
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

All orientable metric surfaces are Riemann surfaces and admit global conformal parameterizations. Riemann surface structure is a fundamental structure and governs many natural physical phenomena, such as heat diffusion and electro-magnetic fields on the surface. A good parameterization is crucial for simulation and visualization. This paper provides an explicit method for finding optimal global conformal parameterizations of arbitrary surfaces. It relies on certain holomorphic differential forms and conformal mappings from differential geometry and Riemann surface theories. Algorithms are developed to modify topology, locate zero points, and determine cohomology types of differential forms. The implementation is based on a finite dimensional optimization method. The optimal parameterization is intrinsic to the geometry, preserves angular structure, and can play an important role in various applications including texture mapping, remeshing, morphing and simulation. The method is demonstrated by visualizing the Riemann surface structure of real surfaces represented as triangle meshes.