Energy-efficient wireless sensor network design and implementation for condition-based maintenance

  • Authors:
  • Ankit Tiwari;Prasanna Ballal;Frank L. Lewis

  • Affiliations:
  • Automation and Robotics Research Institute, Ft. Worth, Texas;Automation and Robotics Research Institute, Ft. Worth, Texas;Automation and Robotics Research Institute, Ft. Worth, Texas

  • Venue:
  • ACM Transactions on Sensor Networks (TOSN)
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

A new application architecture is designed for continuous, real-time, distributed wireless sensor networks. We develop a wireless sensor network for machinery condition-based maintenance (CBM) in small machinery spaces using commercially available products. We develop a hardware platform, networking architecture, and medium access communication protocol. We implement a single-hop sensor network to facilitate real-time monitoring and extensive data processing for machine monitoring. A new radio battery consumption model is presented and the battery consumption equation is used to select the most suitable topology and design an energy efficient communication protocol for wireless sensor networks. A new streamlined matrix formulation is developed that allows the base station to compute the best periodic sleep times for all the nodes in the network. We combine scheduling and contention to design a hybrid MAC protocol, which achieves 100% collision avoidance by using our modified RTS-CTS contention mechanism known as UC-TDMA protocol. A LabVIEW graphical user interface is described that allows for signal processing, including FFT, various moments, and kurtosis. A wireless CBM sensor network implementation on a heating and air conditioning plant is presented as a case study.