Impact of background traffic on performance of high-speed TCP variant protocols

  • Authors:
  • Sangtae Ha;Long Le;Injong Rhee;Lisong Xu

  • Affiliations:
  • Department of Computer Science, North Carolina State University, Raleigh, NC 27695, United States;Department of Computer Science, North Carolina State University, Raleigh, NC 27695, United States;Department of Computer Science, North Carolina State University, Raleigh, NC 27695, United States;Department of Computer Science and Engineering, University of Nebraska, Lincoln, NE 68588, United States

  • Venue:
  • Computer Networks: The International Journal of Computer and Telecommunications Networking
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper examines the effect of background traffic on the performance of existing high-speed TCP variant protocols, namely BIC-TCP, CUBIC, FAST, HSTCP, H-TCP and Scalable TCP. We demonstrate that the stability, link utilization, convergence speed and fairness of the protocols are clearly affected by the variability of flow sizes and round-trip times (RTTs), and the amount of background flows competing with high-speed flows in a bottleneck router. Our findings include: (1) the presence of background traffic with variable flow sizes and RTTs improves the fairness of most high-speed protocols, (2) all protocols except FAST and HSTCP show good intra-protocol fairness regardless of the types of background traffic, (3) HSTCP needs a larger amount of background traffic and more variable traffic than the other protocols to achieve convergence, (4) H-TCP trades stability for fairness; that is, while its fairness is good independent of background traffic types, larger variance in the flow sizes and RTTs of background flows causes the protocol to induce a higher degree of global loss synchronization among competing flows, lowering link utilization and stability, (5) FAST suffers unfairness and instability in small buffer or long delay networks regardless of background traffic types, and (6) the fairness of high-speed protocols depends more on the amount of competing background traffic rather than its rate variability. We also find that the presence of high-speed flows does not greatly reduce the bandwidth usage of background Web traffic.