On scalable attack detection in the network

  • Authors:
  • Ramana Rao Kompella;Sumeet Singh;George Varghese

  • Affiliations:
  • Department of Computer Science, University of California at San Diego, La Jolla, CA;Department of Computer Science, University of California at San Diego, La Jolla, CA;Department of Computer Science, University of California at San Diego, La Jolla, CA

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Current intrusion detection and prevention systems seek to detect a wide class of network intrusions (e.g., DoS attacks, worms, port scans) at network vantage points. Unfortunately, even today, many IDS systems we know of keep per-connection or per-flow state to detect malicious TCP flows. Thus, it is hardly surprising that these IDS systems have not scaled to multigigabit speeds. By contrast, both router lookups and fair queuing have scaled to high speeds using aggregation via prefix lookups or DiffServ. Thus, in this paper, we initiate research into the question as to whether one can detect attacks without keeping per-flow state. We will show that such aggregation, while making fast implementations possible, immediately causes two problems. First, aggregation can cause behavioral aliasing where, for example, good behaviors can aggregate to look like bad behaviors. Second, aggregated schemes are susceptible to spoofing by which the intruder sends attacks that have appropriate aggregate behavior. We examine a wide variety of DoS and scanning attacks and show that several categories (bandwidth based, claim-and-hold, port-scanning) can be scalably detected. In addition to existing approaches for scalable attack detection, we propose a novel data structure called partial completion filters (PCFs) that can detect claim-and-hold attacks scalably in the network. We analyze PCFs both analytically and using experiments on real network traces to demonstrate how we can tune PCFs to achieve extremely low false positive and false negative probabilities.