Admission control with advance reservations in simple networks

  • Authors:
  • Dror Rawitz

  • Affiliations:
  • Caesarea Rothschild Institute, University of Haifa, Haifa 31905, Israel

  • Venue:
  • Journal of Discrete Algorithms
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the admission control problem we are given a network and a set of connection requests, each of which is associated with a path, a time interval, a bandwidth requirement, and a weight. A feasible schedule is a set of connection requests such that at any given time, the total bandwidth requirement on every link in the network is at most 1. Our goal is to find a feasible schedule with maximum total weight. We consider the admission control problem in two simple topologies: the line and the tree. We present a 12c-approximation algorithm for the line topology, where c is the maximum number of requests on a link at some time instance. This result implies a 12c-approximation algorithm for the rectangle packing problem, where c is the maximum number of rectangles that cover simultaneously a point in the plane. We also present an O(logt)-approximation algorithm for the tree topology, where t is the size of the tree. We consider the loss minimization version of the admission control problem in which the goal is to minimize the weight of unscheduled requests. We present a c-approximation algorithm for loss minimization problem in the tree topology. This result is based on an approximation algorithm for a generalization of set cover, in which each element has a covering requirement, and each set has a covering potential. The approximation ratio of this algorithm is @D, where @D is the maximum number of sets that contain the same element.