Zero-knowledge from secure multiparty computation

  • Authors:
  • Yuval Ishai;Eyal Kushilevitz;Rafail Ostrovsky;Amit Sahai

  • Affiliations:
  • Technion, Haifa, Israel;Technion, Haifa, Israel;UCLA, Los Angeles, CA;UCLA, Los Angeles, CA

  • Venue:
  • Proceedings of the thirty-ninth annual ACM symposium on Theory of computing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a general construction of a zero-knowledge proof for an NP relation R(x,w) which only makes a black-box use of a secure protocol for a related multi-partyfunctionality f. The latter protocol is only required to be secure against a small number of "honest but curious" players. As an application, we can translate previous results on the efficiency of secure multiparty computation to the domain of zero-knowledge, improving over previous constructions of efficient zero-knowledge proofs. In particular, if verifying R on a witness of length m can be done by a circuit C of size s, and assuming one-way functions exist, we get the following types of zero-knowledge proof protocols. Approaching the witness length. If C has constant depth over ∧,∨,⊕, - gates of unbounded fan-in, we get a zero-knowledge protocol with communication complexity m·poly(k)·polylog(s), where k is a security parameter. Such a protocol can be implemented in either the standard interactive model or, following a trusted setup, in a non-interactive model. "Constant-rate" zero-knowledge. For an arbitrary circuit C of size s and a bounded fan-in, we geta zero-knowledge protocol with communication complexity O(s)+poly(k). Thus, for large circuits, the ratio between the communication complexity and the circuit size approaches a constant. This improves over the O(ks) complexity of the best previous protocols.