Faster integer multiplication

  • Authors:
  • Martin Fürer

  • Affiliations:
  • Pennsylvania State University, University Park, PA

  • Venue:
  • Proceedings of the thirty-ninth annual ACM symposium on Theory of computing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

For more than 35 years, the fastest known method for integer multiplication has been the Schönhage-Strassen algorithm running in time O(n log n log log n). Under certain restrictive conditions there is a corresponding Ω(n log n) lower bound. The prevailing conjecture has always been that the complexity of an optimal algorithm is Θ(n log n). We present a major step towards closing the gap from above by presenting an algorithm running in time n log n, 2O(log* n). The main result is for boolean circuits as well as for multitape Turing machines, but it has consequences to other models of computation as well.