Cluster-based evolutionary design of digital circuits using all improved multi-expression programming

  • Authors:
  • Fatima Zohra Hadjam;Claudio Moraga;Mohamed Benmohamed

  • Affiliations:
  • University of Djillali Liabes, Sidi Bel abbes, Algeria;European Centre for Soft Computing, Mieres, Oviedo, Spain;University of Mentouri, Constantine, Algeria

  • Venue:
  • Proceedings of the 9th annual conference companion on Genetic and evolutionary computation
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Evolutionary Electronics (EE) is a research area which involves application of Evolutionary Computation in the domain of electronics. EE algorithms are generally able to find good solutions to rather small problems in a reasonable amount of time, but the need for solving more and more complex problems increases the time required to find adequate solutions. This is due to the large number of individuals to be evaluated and to the large number of generations required until the convergence process leads to the solution. As a consequence, there have been multiple efforts to make EE faster, and one of the most promising choices is to use distributed implementations. In this paper, we propose a cluster-based evolutionary design of digital circuits using a distributed improved multi expression programming method (DIMEP). DIMEP keeps, in parallel, several sub-populations that are processed by Impoved Multi-Expression Programming algorithms, with each one being independent from the others. A migration mechanism produces a chromosome exchange between the subpopulations using MPI (Message Passing Interface) on a dedicated cluster of workstations (Lido Cluster, Dortmund University). This paper presents the main ideas and shows preliminary experimental results.