Membrane Systems with Peripheral Proteins: Transport and Evolution

  • Authors:
  • Matteo Cavaliere;Sean Sedwards

  • Affiliations:
  • The Microsoft Research-University of Trento, Centre for Computational and Systems Biology, Trento, Italy;The Microsoft Research-University of Trento, Centre for Computational and Systems Biology, Trento, Italy

  • Venue:
  • Electronic Notes in Theoretical Computer Science (ENTCS)
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Transport of substances and communication between compartments are fundamental biological processes, often mediated by the presence of complementary proteins attached to the surfaces of membranes. Within compartments, substances are acted upon by local biochemical rules. Inspired by this behaviour we present a model based on membrane systems, with objects attached to the sides of the membranes and floating objects that can move between the regions of the system. Moreover, in each region there are evolution rules that rewrite the transported objects, mimicking chemical reactions. We first analyse the system, showing that interesting qualitative properties can be decided (like reachability of configurations) and then present a simulator based on a stochastic version of the introduced model and show how it can be used to simulate relevant quantitative biological processes.