Synthesizing stochasticity in biochemical systems

  • Authors:
  • Brian Fett;Jehoshua Bruck;Marc D. Riedel

  • Affiliations:
  • University of Minnesota, Minneapolis, MN;California Institute of Technology, Pasadena, CA;University of Minnesota, Minneapolis, MN

  • Venue:
  • Proceedings of the 44th annual Design Automation Conference
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Randomness is inherent to biochemistry: at each instant, the sequence of reactions that fires is a matter of chance. Some biological systems exploit such randomness, choosing between different outcomes stochastically - in effect, hedging their bets with a portfolio of responses for different environmental conditions. In this paper, we discuss techniques for synthesizing such stochastic behavior in engineered biochemical systems. We propose a general method for designing a set of biochemical reactions that produces different combinations of molecular types according to a specified probability distribution. The response is precise and robust to perturbations. Furthermore, it is programmable: the probability distribution is a function of the quantities of input types. The method is modular and extensible. We discuss strategies for implementing various functional dependencies: linear, logarithmic, exponential, etc. This work has potential applications in domains such as biochemical sensing, drug production, and disease treatment. Moreover, it provides a framework for analyzing and characterizing the stochastic dynamics in natural biochemical systems such as the lysis/lysogeny switch of the lambda bacteriophage.