Social network analysis for routing in disconnected delay-tolerant MANETs

  • Authors:
  • Elizabeth M. Daly;Mads Haahr

  • Affiliations:
  • Trinity College Dublin, Dublin, Ireland;Trinity College Dublin, Dublin, Ireland

  • Venue:
  • Proceedings of the 8th ACM international symposium on Mobile ad hoc networking and computing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Message delivery in sparse Mobile Ad hoc Networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes may move freely. This paper presents a multidisciplinary solution based on the consideration of the so-called small world dynamics which have been proposed for economy and social studies and have recently revealed to be a successful approach to be exploited for characterising information propagation in wireless networks. To this purpose, some bridge nodes are identified based on their centrality characteristics, i.e., on their capability to broker information exchange among otherwise disconnected nodes. Due to the complexity of the centrality metrics in populated networks the concept of ego networks is exploited where nodes are not required to exchange information about the entire network topology, but only locally available information is considered. Then SimBet Routing is proposed which exploits the exchange of pre-estimated "betweenness' centrality metrics and locally determined social "similarity' to the destination node. We present simulations using real trace data to demonstrate that SimBet Routing results in delivery performance close to Epidemic Routing but with significantly reduced overhead. Additionally, we show that SimBet Routing outperforms PRoPHET Routing, particularly when the sending and receiving nodes have low connectivity.