Forecasting market prices in a supply chain game

  • Authors:
  • Christopher Kiekintveld;Jason Miller;Patrick R. Jordan;Michael P. Wellman

  • Affiliations:
  • University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI

  • Venue:
  • Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.01

Visualization

Abstract

Future market conditions can be a pivotal factor in making business decisions. We present and evaluate methods used by our agent, Deep Maize, to forecast market prices in the Trading Agent Competition Supply Chain Management Game. As a guiding principle we seek to exploit as many sources of available information as possible to inform predictions. Since information comes in several different forms, we integrate well-known methods in a novel way to make predictions. The core of our predictor is a nearest-neighbors machine learning algorithm that identifies historical instances with similar economic indicators. We augment this with an online learning procedure that transforms the predictions by optimizing a scoring rule. This allows us to select more relevant historical contexts using additional information available during individual games. We also explore the advantages of two different representations for predicting price distributions. One uses absolute prices, and the other uses statistics of price time series to exploit local stability. We evaluate these methods using both data from the 2005 tournament final round and additional simulations. We compare several variations of our predictor to one another and a baseline predictor similar to those used by many other tournament agents. We show substantial improvements over the baseline predictor, and demonstrate that each element of our predictor contributes to improved performance.