Project Kittyhawk: building a global-scale computer: Blue Gene/P as a generic computing platform

  • Authors:
  • Jonathan Appavoo;Volkmar Uhlig;Amos Waterland

  • Affiliations:
  • IBM T. J. Watson Research Center, Yorktown Heights, NY;IBM T. J. Watson Research Center, Yorktown Heights, NY;IBM T. J. Watson Research Center, Yorktown Heights, NY

  • Venue:
  • ACM SIGOPS Operating Systems Review
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper describes Project Kittyhawk, an undertaking at IBM Research to explore the construction of a next-generation platform capable of hosting many simultaneous web-scale workloads. We hypothesize that for a large class of web-scale workloads the Blue Gene/P platform is an order of magnitude more efficient to purchase and operate than the commodity clusters in use today. Driven by scientific computing demands the Blue Gene designers pursued an aggressive system-on-a-chip methodology that led to a scalable platform composed of air-cooled racks. Each rack contains more than a thousand independent computers with highspeed interconnects inside and between racks. We postulate that the same demands of efficiency and density apply to web-scale platforms. This project aims to develop the system software to enable Blue Gene/P as a generic platform capable of being used by heterogeneous workloads. We describe our firmware and operating system work to provide Blue Gene/P with generic system software, one of the results of which is the ability to run thousands of heterogeneous Linux instances connected by TCP/IP networks over the high-speed internal interconnects.