Efficient guaranteed disk request scheduling with fahrrad

  • Authors:
  • Anna Povzner;Tim Kaldewey;Scott Brandt;Richard Golding;Theodore M. Wong;Carlos Maltzahn

  • Affiliations:
  • University of California, Santa Cruz, Santa Cruz, CA, USA;University of California, Santa Cruz, Santa Cruz, CA, USA;University of California, Santa Cruz, Santa Cruz, CA, USA;IBM Almaden Research Center, San Jose, CA, USA;IBM Almaden Research Center, San Jose, CA, USA;University of California, Santa Cruz, Santa Cruz, CA, USA

  • Venue:
  • Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Guaranteed I/O performance is needed for a variety of applications ranging from real-time data collection to desktop multimedia to large-scale scientific simulations. Reservations on throughput, the standard measure of disk performance, fail to effectively manage disk performance due to the orders of magnitude difference between best-, average-, and worst-case response times, allowing reservation of less than 0.01% of the achievable bandwidth. We show that by reserving disk resources in terms of utilization it is possible to create a disk scheduler that supports reservation of nearly 100% of the disk resources, provides arbitrarily hard or soft guarantees depending upon application needs, and yields efficiency as good or better than best-effort disk schedulers tuned for performance. We present the architecture of our scheduler, prove the correctness of its algorithms, and provide results demonstrating its effectiveness.