On partitioning graphs via single commodity flows

  • Authors:
  • Lorenzo Orecchia;Leonard J. Schulman;Umesh V. Vazirani;Nisheeth K. Vishnoi

  • Affiliations:
  • University of California, Berkeley, Berkeley, USA;California Institute of Technology, Pasadena, USA;University of California, Berkeley, Berkeley, USA;IBM India Research Lab, New Delhi, India

  • Venue:
  • STOC '08 Proceedings of the fortieth annual ACM symposium on Theory of computing
  • Year:
  • 2008

Quantified Score

Hi-index 0.02

Visualization

Abstract

In this paper we obtain improved upper and lower bounds for the best approximation factor for Sparsest Cut achievable in the cut-matching game framework proposed in Khandekar et al. [9]. We show that this simple framework can be used to design combinatorial algorithms that achieve O(log n) approximation factor and whose running time is dominated by a poly-logarithmic number of single-commodity max-flow computations. This matches the performance of the algorithm of Arora and Kale [2]. Moreover, we also show that it is impossible to get an approximation factor of better than Ω(√log n) in the cut-matching game framework. These results suggest that the simple and concrete abstraction of the cut-matching game may be powerful enough to capture the essential features of the complexity of Sparsest Cut.