DVFS in loop accelerators using BLADES

  • Authors:
  • Ganesh Dasika;Shidhartha Das;Kevin Fan;Scott Mahlke;David Bull

  • Affiliations:
  • University of Michigan - Ann Arbor, Ml;ARM, Ltd., Cambridge, United Kingdom;University of Michigan - Ann Arbor, Ml;University of Michigan - Ann Arbor, Ml;ARM, Ltd., Cambridge, United Kingdom

  • Venue:
  • Proceedings of the 45th annual Design Automation Conference
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Hardware accelerators are common in embedded systems that have high performance requirements but must still operate within stringent energy constraints. To facilitate short time-to-market and reduced non-recurring engineering costs, automatic systems that can rapidly generate hardware bearing both power and performance in mind are extremely attractive. This paper proposes the BLADES (Better-than-worst-case Loop Accelerator Design) system for automatically designing self-tuning hardware accelerators that dynamically select their best operating frequency and voltage based on environmental conditions, silicon variation, and input data characteristics. Errors in operation are detected by Razor flip-flops, and recovery is initiated. The architecture efficiently supports detection, rollback, and recovery to provide a highly adaptable and configurable loop accelerator. The overhead of deploying Razor flip-flops is significantly reduced by automatically chaining primitive computation operations together. Results on a range of loop accelerators show average energy savings of 32% gained by voltage scaling below the nominal supply voltage.