An adaptive, high performance mac for long-distance multihop wireless networks

  • Authors:
  • Sergiu Nedevschi;Rabin K. Patra;Sonesh Surana;Sylvia Ratnasamy;Lakshminarayanan Subramanian;Eric Brewer

  • Affiliations:
  • University of California, Berkeley, Berkeley, CA, USA;University of California, Berkeley, Berkeley, CA, USA;University of California, Berkeley, Berkeley, CA, USA;Intel Research Berkeley, Berkeley, CA, USA;New York University, New York, NY, USA;University of California, Berkeley, Berkeley, CA, USA

  • Venue:
  • Proceedings of the 14th ACM international conference on Mobile computing and networking
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of efficientMAC design for long-distance WiFi-based mesh networks. In such networks it is common to find long propagation delays, the use of directional antennas, and the presence of inter-link interference. Prior work has shown that these characteristics make traditional CSMA-based MACs a poor choice for long-distance mesh networks and this finding has led to several recent research efforts exploring the use of TDMA-based approaches to media access. In this paper we first identify, and then address, several shortcomings of current TDMA-based proposals. First, because they use fixed-length transmission slots, current TDMA-based solutions do not adapt to dynamic variations in traffic load leading to inefficiencies in both throughput and delay. As we show in this paper, the throughput achieved by existing solutions falls far short of the optimal achievable network throughput. Finally, due to the scheduling constraints imposed by inter-link interference, current TDMA-based solutions only apply to bipartite network topologies. In this paper, we present JazzyMac, a simple, practical and efficient MAC protocol that addresses the above limitations. JazzyMac achieves efficiency by allowing variable-length link transmissions slots and then defining a distributed protocol by which nodes adapt the length of their transmission slots to changing traffic demands. JazzyMac is practical in that the adaptation at each node uses purely local information and that our protocol applies to arbitrary network topologies. Finally, the use of dynamic slot sizes allows JazzyMac to achieve better tradeoffs between throughput and delay. We evaluate JazzyMac using detailed simulation over a range of traffic patterns and realistic topologies. Our results show that JazzyMac improves throughput in all considered scenarios. This improvement is often substantial (e.g.,in 50% of our scenarios, throughput improves by over 40%) and is particularly pronounced for the common case of asymmetric traffic (e.g.,leading to almost 100% improvements). Furthermore, compared to current solutions, JazzyMac can achieve much better average delay for the same throughput.